

THE LAB X
Childhood and early adolescence are
the critical age ranges for children to
learn anything, including Coding,
because their brains are still
developing and learning “how to learn”.

Now is the chance to introduce your
child to native programming.

Curriculum

Dr. Oka Kurniawan
The Lab Curriculum Specialist

Dr. Oka is a Senior Lecturer for
Singapore University of Technology
and Design. His research areas
include Computer Science Education.

Dr. Scarlett Mattoli
Child Psychologist Specialist

Dr. Scarlett is a
Psychotherapist/Counsellor,
Coaching Psychologist & Supervisor
and Psychometrist, specialising in
psychological and therapeutic
support.

Dr. Collin Ang
Technology/Industry Specialist

Dr. Collin is the Managing Director of
Decision Science and is a thought
leader in the industry for digital
transformation and analytics.

Senior Team

 Students

Empowering
through
Computational
Thinking

The Lab X Program

The Lab X is a series of programs suited for students with varied interests. These
programs cater to students who have completed The Lab Coder Advanced course
and are interested to expand their coding knowledge into different specializations.

The Lab
Competitive

Programming

The Lab Competitive
Programming is a
training course for
advanced students to
showcase their
programming prowess
through participation in
international
competitions.

The Lab Unity
Game

Development

For students who are
interesting in games
development, The Lab
Unity Game
Development will be an
exciting continuation of
the students’ interest
into the world of coding
and technology.

The Lab Python
Programming

The program is for
young adults who are
new in programming.
Python is one of the
simplest open-source
programming
languages to learn,
making it a great entry
point for beginners
interested in data
science.

THE LAB X - PYTHON PROGRAMMING
(The Lab Coder Advanced Course)

The advanced curriculum trains the students on Python language syntaxes of various programming concepts for practical business
use.

In order to expose the students to a vast range of real-life problems, the advanced curriculum focuses on algorithmic development.
Practical and interesting challenges from different domains are carefully curated and customised for progressive training. The
completion of this course enables them to have an in-depth knowledge of modern-day programming, as well as the understanding of
the level of versatility required for a programmer's skills to be useful.

LEVELS 3
PYTHON
PROGRAM
MING
TOPICS/
CONCEPTS

Screen Input/Output

Use of different print and input
formats to control the display of
information on the screen and
capturing of data entries from the
user.

Function

Breaking codes down into functions is the
norm. Not just for readability but also for
programme optimisation, ease of
debugging and even feasibility of a solution.
Particularly, functions with input parameters
and return values are usually the
indispensable assets of a programme.

OOP

Object-oriented programming
(OOP) Is the modern
programming methodology
compared to procedural
programming. Learn about how
this methodology changes the
way a solution is implemented
with the same computational
thinking.

PROGRAM OUTLINE

PYTHON
PROGRAM
MING
TOPICS/
CONCEPTS

Variables, Data Type and Casting

Extending from the knowledge of
a variable, learn about what data
type of a variable means and how
to convert between the different
types for appropriate operations.

2D List

A list can go multi-dimensional. By just adding
a second dimension, 2D list gives a new
perspective on how problems can be
effectively represented and their solutions
becoming more obvious.

OOP – Python Class

The basis of OOP is what we
call a class. Learn how to build
classes and create 'objects'
from these classes to execute
your codes (thus the term
object-oriented programming).

Operators

Understanding the use of
operators, not just for arithmetic
operations but for other data
types as well in order to
manipulate the data or construct
appropriate conditions for
comparisons.

Dictionary

A dictionary is a collection of key-value pairs
which allows each value to be instantly
accessed by providing its key. This data
structure stands out in applications where you
need to regularly search for data with a unique
key.

OOP – Class/Object variables

Understanding the difference
between class and object
variables helps you to design
your classes with variables
that can be shared by its
objects.

For Loop

More than just a repeat cycle,
learn when to deploy the for loop
and how to use the counter in the
loop as part of your algorithm.

Turtle

Extending beyond text-based display, the
graphic library, Turtle, provides a means to
illustrate on the display with colourful lines
and curves. Graphics are not just a good-to
have, but a pre-requisite in some applications
such as games.

OOP – Static methods

Creating functions in a class
that can be called without
object instances, called static
methods, is one of the variants
to designing functions in OOP.

PYTHON
PROGRAM
MING
TOPICS/
CONCEPTS

While Loop

Condition-triggered loop that
allows you to formulate cycles
without the need to know the
definite times of repetition.

List

Extending the programming
functionality beyond basic
applications with the use of list to
handle large or scalable data.
Powerful constructs can be formed
with loops to solve complex problems
with short codes.

OOP – Inheritance

Inheritance allows us to define a class
that inherits all the methods and
properties from another class. This is
useful for code extension without re-
implementation. You'll be accustomed
to terms like 'Parent Class' and 'Child
Class'.

Conditional Statements

The basis of logic is contributed
largely by if-else statements.
Coupled with AND/OR operators,
multiple conditions can be
constructed to form complex
decision-making processes.

Nested Loops/Conditional Statements

Nesting will be commonly used as the
problems increase in complexity.
Nesting involves nested loops as well
as nested conditional statements.

OOP – Polymorphism

Polymorphism means the ability to
take various forms. In Python,
Polymorphism allows us to redefine
functions existing in an inherited class,
thereby changing its functionality to
suit the inheriting class.

Built-In Functions

Along the way, you will be
introduced useful built-in
functions such as random, sleep,
split, etc, which will be become
useful tools for your algorithms.

String Manipulation

Many problems boil down to solving
string patterns. Hence, efficient ways
to manipulate strings are vital in
formulating solutions to such
problems.

File I/O

A programme will usually need to
save data into the harddisk for
subsequent retrieval. The knowledge
of File I/O is, thus, essential for
understanding how database works.

THE LAB COMPETITIVE PROGRAMMING

The Lab Competitive Programming are catered to individuals who have a strong foundation in Mathematics, a passion for
programming and the fortitude to persevere through countless hours of thinking through highly difficult coding challenges. Our
selection process requires all interested students to take an entry examination.

Competitions play a role in motivating students to perform and excel and offer a lot more reward than just the winning prize.
They offer a chance for participants to gain substantial experience, showcase skills, analyze and evaluate outcomes and uncover
personal aptitude.

TRAINING TIMELINE CONTENT FOR EACH LESSON

Dates Description
• Teaching of theories including useful

mathematical functions, programming
paradigms, data structures, computational
geometry, popular algorithms, etc.

o Practice on competition questions
and solution walkthroughs

• Homework may be given in some lessons

Feb till End of
March

Application

1st week of April Application closes
1st and 2nd week
of April

Entry Level Exam

3rd week of April Marking Period
4th week of April Announcement of results
1st week of May Commencement of training

Content for each lesson:
- Lecture (topics to be spread across training period)
– Practice on competition questions and solution
walkthroughs

- Homework may be given in some lessons

Feb of next
year

CCC Competition

May of next
year

Code Quest Competition
(* Only for student above the age of 14 in May)

PROGRAM OUTLINE

THE LAB UNITY GAME DEVELOPMENT

Unity is the most popular game engine in the world. It is behind many of the most popular games such as Crossy Road, Among Us,
Angry Bird, Genshin Impact and a lot more. Moreover, it not only is well-suited for both 2D and 3D games but has also become a
powerful tool for VR and AR development.

This series of Unity Game Development Program teach students some core techniques of developing both 2D and 3D games in Unity.
It covers a wide range of topics from character control, coding (in C#), to asset management.

Program Outline
Game Genre
(with classic examples)

Brief description of game
(details subject to changes)

Concepts to be taught throughout the modules:

- OOP application using C#
- Game controls (keyboard/mouse/touch inputs)
- UI design
- Understanding game genre
- Hierarchy in game design
- Physics application
- 2D/3D Vector for motion application
- Orientation concept (rotation/degree/radian)
- Animation
- Collision handling
- Visual effects
- Sound effects
- Automation
- Crowd control
- Character intelligence control
- Multi-platform publishing (e.g. pc, android)

2D Platformer
(e.g. Mega Man)

Controlling character to
navigate on a 2D platform
while performing actions such
as attacking enemies and
collecting rewards.

Involves learning about
character animation and
control and asset applications.

Skill Arcade
(e.g. Stack-the-Box)

Placing of objects with
precision and speed.

Involves learning tricks to
simulate object deformation in
3D environment.

PROGRAM OUTLINE

Program Outline
Car Racing
(e.g. Outrun)

Classic 3D car racing on
randomly generated tracks.

Involves learning about using
codes to create changing
environment to induce an
element of surprise.

Predator Arcade
(e.g. Snake)

Character evolves by growing
bigger as it eats food that is
auto-populated on the terrain.

Involves learning about
dynamic character
customisation and evolution
as the game progresses.

Shoot’em Up
(e.g. Space Commander)

Controlling spacecraft and
firing bullet streams at
multiple enemies.

Involves learning about
generation and control of
massive combat elements in a
multi-enemy environment.

First Person Shooter
(e.g. Doom)

First-person view shooting
game with multi-player.

Involves multiple-angle
controls and split views.

Strategy
(e.g. Tower defence)

Territorial defence through
obstruction of enemies’
advances.

Involves building of allies and
balancing of forces.

Membership Fees

Exclusive Access

Elective Workshops at members’ prices

Merchandise at members’ prices

Weekly classes; 100 minutes per class

The Lab Python
Programming

3 months $380/mth

6 months $340/mth

12 months $320/mth

The Lab Unity

Game
Development

10 lessons $850

<To complete 10 lessons in
12 weeks>

The Lab

Competitive
Programming

4 lessons/mth $400

For General Enquiries:
Telephone: (+65) 8916-0017
Email: contact@thelab.sg

Central
The Centrepoint
176 Orchard Road
#03-18/19
Singapore 238843

East
Kinex Mall
11 Tanjong Katong Road
#03-01/02
Singapore 437157

Follow us

