

THE LAB

Childhood and early adolescence are the critical age ranges for children to learn anything, including Coding, because their brains are still developing and learning "how to learn".

Now is the chance to introduce your child to native programming.

Senior Team

Dr. Oka Kurniawan The Lab Curriculum Specialist

Dr. Oka is a Senior Lecturer for Singapore University of Technology and Design. His research areas include Computer Science Education.

Dr. Scarlett Mattoli Child Psychologist Specialist

Dr. Scarlett is a Psychotherapist/Counsellor, Coaching Psychologist & Supervisor and Psychometrist, specialising in psychological and therapeutic support.

Dr. Collin Ang Technology/Industry Specialist

Dr. Collin is the Managing Director of Decision Science and is a thought leader in the industry for digital transformation and analytics.

Students

Empowering through Computational Thinking

The Lab Coder Program

The curriculum is broken into 4 stages, Foundation, Basic, Intermediate and Advanced. At the end of this course, your child will achieve a high competency in Computational Thinking and code proficiently in the Python programming language.

This curriculum is reviewed by Dr. Oka Kurniawan, Senior Lecturer SUTD and its framework is based upon the Computer Science degree syllabus.

The program is suited for beginners aged 10-14 or students who have graduated from The Lab Junior program.

Open lab structure	Student-centered, inquiry-based curriculum
4 Levels (Foundation, Basic, Intermediate, Advanced)	Ratio 1:8

THE LAB CODER – FOUNDATION LEVEL

The Lab Coder Foundation is a stepping stone to the Lab Coder program. It serves as a preparatory program for students to ease them into the vigorous requirements of the Lab Coder program. It provides a broad introductory to allow students to seek the skills of a good programmer.

The curriculum focuses mainly on developing the 4 core skills to prepare the student for The Lab Coder program. There are (1) Observation; (2) Analysis; (3) Visualization and (4) Debugging.

			•	
LEVELS			2	
PROGRAM MING	Observation	Analysis	Visualization	Debugging
CONCEPTS	Students will be given several pre-coded programs and are tasked to decipher what the codes mean in their assigned challenges. These exercises are aimed to help students in their observation skills.	Students are given a series of challenges that focuses on improving their analytical thinking and logical thinking skills. This will help them to solve future coding challenges in a more logical and analytical manner.	Students are given a series of challenges aimed at improving their visualization skills. The purpose is to train students to easily identify trends, patterns, and outliers within large information data.	The debugging process usually consists of the following: examine the error symptoms, identify the cause, and finally fix the errors. Students are trained with a series of challenges that are purposely coded erroneously and through these exercises, learn to cultivate strong debugging skills.

THE LAB CODER - BASIC LEVEL

This curriculum is a fun and interactive introductory course to students with little or no prior experience in Python. It is designed for beginner's level introduction to visual programming, Python, and robotics. In this course, students will learn how to build their own mini projects revolving a Raspberry Pi, understand its components and execute commands through basic visual programming.

Core computational thinking concepts such as decomposition, pattern recognition, and abstraction will be introduced as will programming tools such as flowcharts. The curriculum covers Python programming concepts, including sequencing, programming loops, conditional statements, and operators.

LEVELS	2			
PROGRAM MING	Basic Loop	Conditional Statements	Operators	
CONCEPTS	A For Loop is used for iterating over a sequence. This is one of the most basic concepts and is also highly used in programming	The basis of logic is contributed largely by if-else statements. Coupled with AND/OR operators, multiple conditions can be constructed to form complex decision making processes. Examples: If, If/Else, If/Else/If	Understanding the use of operators, not just for arithmetic operations but for other data types as well in order to construct appropriate conditions for conditional checks. Examples: >, <, ==	

ROBOTIC	LCD	Buzzer	Button	Ultrasonic Sensor	Colour Sensor
SENSORS	- Set Display	- Set play	- Wait for button		- Return Colour
	Туре	type	pressed	- Distance in CM	Value
	- On	- On	- Wait for button		- Return Colour
	- On for seconds	- On for	released		Name
	- Set column and	seconds	- Wait for button		- Return Ambient Light
	row	- Play music	Bumped		
	- Clear Screen	note	- Return button type		
		- Play tone			
		frequency			

THE LAB CODER - INTERMEDIATE LEVEL

During the course students will take the concepts that they have learnt in Basic to the next level. More advanced Python programming concepts will be introduced to the students to ensure they have programming thinking capabilities similar to a university undergraduate. The curriculum covers Python programming concepts, including more complex programming loops, nested conditional statements, variables and lists.

LEVELS		2		
PROGRAMMING	While Loop	Nested Loop	Variables	List
CONCEPTS	This is an extension of For	(For or while)	Variables play an	Extending the
	Loop.	A nested loop is a loop	important role	programming
	While Loop, a condition	inside a loop. The "inner	in	functionality
	triggered	loop" will be executed	computer programming	beyond basic
	loop that allows	one time for each	because	applications
	you to formulate cycles	iteration of the "outer	they enable	with the use of list to
	without the need to know	loop".	programmers to	handle large or scalable
	the definite times of		write flexible programs.	data storing. Powerful
	repetition.		Rather	constructs can be
			than entering data	formed
			directly into	with loops to solve
			a program,	complex problems with
			a programmer can use	short codes.
			variables to represent	
			the data.	

PROGRAMMING CONCEPTS	Function	Conditional Statements	Operators	List
	Breaking codes down into functions is the norm. Not just for readability but also for programme optimisation, ease of debugging and even feasibility of an solution. Particularly, functions with input parameters and return values are usually the indispensable assets of a programme.	The basis of logic is contributed largely by if else statements. Coupled with AND/OR operators, multiple conditions can be constructed to form complex decision making processes. Examples: If, If/Else, If/Else/If, Multiple If/Else statements	Understanding the use of operators, not just for arithmetic operations but for other data types as well in order to construct appropriate conditions for conditional checks. Examples: >, <, ==	Extending the programming functionality beyond basic applications with the use of list to handle large or scalable data storing. Powerful constructs can be formed with loops to solve complex problems with short codes.
ROBOTIC SENSORS	LCD - Set Display Type - On - On for seconds - Set column and row - Clear Screen Colour Sensor - Return Colour Value - Return Colour Name - Return Ambient Light	Buzzer - Set play type - On - On for seconds - Play music note - Play tone frequency Motor driver - Set motor type - On - On for seconds - Turn clockwise/anticlockwise	Button - Wait for button pressed - Wait for button released - Wait for button bumped - Return button type Gyro Sensor - Return X Y Z axis - Reset X, Y, Z axis	Ultrasonic Sensor - Distance in CM

THE LAB CODER - ADVANCED LEVEL

Upon strengthening their computational thinking in our The Lab Basic and Intermediate curriculums, students will progress into code implementation. The advanced curriculum will train the students on Python language syntaxes of various programming concepts, including those they have encountered during the basic and intermediate curriculums.

In order to expose the students to a vast range of real-life problems, the advanced curriculum focuses on algorithmic development. Practical and interesting challenges from different domains are carefully curated and customised for progressive training. The completion of this course enables them to have an in-depth knowledge of modern-day programming, as well as the understanding of the level of versatility required for a programmer's skills to be useful.

LEVELS	3			
PYTHON	Screen Input/Output	Function	OOP	
PROGRAM				
MING	Use of different print and input	Breaking codes down into functions is the	Object-oriented programming	
TOPICS/	formats to control the display of	norm. Not just for readability but also for	(OOP) Is the modern	
CONCEPTS	information on the screen and capturing of data entries from the user.	programme optimisation, ease of debugging and even feasibility of a solution. Particularly, functions with input parameters and return values are usually the indispensable assets of a programme.	programming methodology compared to procedural programming. Learn about how this methodology changes the way a solution is implemented with the same computational thinking.	

PYTHON PROGRAM	Variables, Data Type and Casting	2D List	OOP – Python Class
MING TOPICS/ CONCEPTS	Extending from the knowledge of a variable, learn about what data type of a variable means and how to convert between the different types for appropriate operations.	A list can go multi-dimensional. By just adding a second dimension, 2D list gives a new perspective on how problems can be effectively represented and their solutions becoming more obvious.	The basis of OOP is what we call a class. Learn how to build classes and create 'objects' from these classes to execute your codes (thus the term object-oriented programming).
	Operators	Dictionary	OOP – Class/Object variables
	Understanding the use of operators, not just for arithmetic operations but for other data types as well in order to manipulate the data or construct appropriate conditions for comparisons.	A dictionary is a collection of key-value pairs which allows each value to be instantly accessed by providing its key. This data structure stands out in applications where you need to regularly search for data with a unique key.	Understanding the difference between class and object variables helps you to design your classes with variables that can be shared by its objects.
	For Loop	Turtle	OOP – Static methods
	More than just a repeat cycle, learn when to deploy the for loop and how to use the counter in the loop as part of your algorithm.	Extending beyond text-based display, the graphic library, Turtle, provides a means to illustrate on the display with colourful lines and curves. Graphics are not just a good-to have, but a pre-requisite in some applications such as games.	Creating functions in a class that can be called without object instances, called static methods, is one of the variants to designing functions in OOP.

PYTHON	While Loop	List	OOP – Inheritance
PROGRAM	write Eoop		
MING TOPICS/ CONCEPTS	Condition-triggered loop that allows you to formulate cycles without the need to know the definite times of repetition.	Extending the programming functionality beyond basic applications with the use of list to handle large or scalable data. Powerful constructs can be formed with loops to solve complex problems with short codes.	Inheritance allows us to define a class that inherits all the methods and properties from another class. This is useful for code extension without re- implementation. You'll be accustomed to terms like 'Parent Class' and 'Child Class'.
	Conditional Statements	Nested Loops/Conditional Statements	OOP – Polymorphism
	The basis of logic is contributed largely by if-else statements. Coupled with AND/OR operators, multiple conditions can be constructed to form complex decision-making processes.	Nesting will be commonly used as the problems increase in complexity. Nesting involves nested loops as well as nested conditional statements.	Polymorphism means the ability to take various forms. In Python, Polymorphism allows us to redefine functions existing in an inherited class, thereby changing its functionality to suit the inheriting class.
	Built-In Functions	String Manipulation	File I/O
	Along the way, you will be introduced useful built-in functions such as random, sleep, split, etc, which will be become useful tools for your algorithms.	Many problems boil down to solving string patterns. Hence, efficient ways to manipulate strings are vital in formulating solutions to such problems.	A programme will usually need to save data into the harddisk for subsequent retrieval. The knowledge of File I/O is, thus, essential for understanding how database works.

For General Enquiries:

Telephone: (+65) 8916-0017 Email: contact@thelab.sg

Central

East

The Centrepoint 176 Orchard Road #03-18/19 Singapore 238843

Kinex Mall 11 Tanjong Katong Road #03-01/02 Singapore 437157

North

Woods Square 12 Woodlands Square #04-68 Woods Square Tower 1 Singapore 737715

Follow us

